您现在的位置是:主页 > 机器人 > 机器人

AI时代 被曲解的法律机器人

admin2023-12-27机器人人已围观

简介科学与理性 我在给研究生们讲授与人工智能有关的法律课程时,被学生们问及最多的问题便是:科幻电影中 机器人 的场景,真的可以成真吗?科幻电影中,机器人不仅可以与我们下棋

科学与理性

我在给研究生们讲授与人工智能有关的法律课程时,被学生们问及最多的问题便是:科幻电影中机器人的场景,真的可以成真吗?科幻电影中,机器人不仅可以与我们下棋,AlphaGo下围棋的例子总是被学者谈及,事实上,机器人如果只会下围棋,那么它对于我们生活几乎不会有任何改变。同时,机器人会下棋的例子也推不出来机器人就可以深刻地影响到我们的生活,因为在其他方面的应用,机器人算法与下棋的算法完全不同。而是已经深度进入我们的生活,包括机器人保姆、机器人服务员、机器人、机器人女友等,涉及社会生活的各个方面。

未来10~20年,人工智能对我们的生活会有什么样的影响?类似这样的问题,不仅同学们关注,产业界的朋友也特别关注,朋友们甚至会时常与我玩笑:作为法律和人工智能的研究者,哪只科技股票未来潜力最大?产业界关心,投资人关心,普通民众关心。法学家们也学会了开始凑热闹,各个大学相继成立人工智能法学院据了解,很多大学的人工智能法学院尚没有一个能教授人工智能法律的老师,当然这并不影响对外挂出人工智能法学院的牌子。那些原本研究法制史的老师们也开始转向人工智能法学的研究,或许可从诸葛亮“木牛流马”中受到些许启示。“风来了,猪都可以飞起”,难道,未来真的已经来了吗?

机器+人≠机器人

(一)长得越像机器人,越不是机器人

人工智能的概念会让很多人兴奋,正所谓闻“机”起舞。号称人工智能的企业如雨后春笋般层出不穷。从调研的情况来看,其中绝大多数的企业根本不属于人工智能企业。当然,什么是人工智能?需要对这一概念有最基本的认知。从60年前的达特茅斯会议至今,人工智能虽不断被学者修正,但它至少应当具备“人工神经网络”“机器学习”“大数据运算”这些基本要素,我在HOW实验室做过不少人工智能的实验,至少要用到“高等数学”要用到“Python”等编程语言以及人工智能神经网络的构建,至少要实现一到两项“智能”目标。

我几乎每年都会参加国际机器会,那上面参展的有一半以上“机器人”(可以唱歌、跳舞)从其本质上都属于前面所说的玩具。我曾与这些产品的工程师聊过,这些产品底层的编程语言大都是Java、Python,或是Php(这三种语方居多),程序大都事先写好,对话的语言和数据也几乎是固定的,如机器人能够背诵的诗词是固定的,整个计算过程与传统的计算机程序并没有本质区别,这并非是真正意义上的人工智能产品。因此,从这一意义上讲,人工智能与传统计算机程序的区别并不在于产品的表面,比如把它做成一个机器人样子,或者表面上可以对话,恰恰在于底层的算法。一般投资人在考察人工智能产品时恰恰忽视了这一点。近年来,人工智能神经网络的算法尤其引人关注,无论是S形神经元算法、卷积神经网络,或是梯度算法,每一种算法的背后还涉及大量数学、微积分和统计学的推导过程,这些人工智能的算法在应用到具体产品时还需要体现出独特的产品创意。人工智能概念更为确切定义是:计算机编程+神经网络+问题解决,三者缺一不可。

然而,很多项目完全缺少这些要素,仅有“机器人”的概念或者机器人的LOGO,就开始以“人工智能”自居,当然投资人不懂,被人工智能概念迷惑的也大有人在,于是,所谓“人工智能”企业就开始满天飞。事实却是,这个世界上长得越像机器人的,越不是机器人。

首先,机器人领域的问答机器人。市场上有一群人热衷于研发问答咨询机器人,还把它放到公共平台上,试图让它能自动回复用户提出的各种问题。事实上,这类设计从一开始就注定是失败的。这个投资人的钱有接近一半不是死在路上,而是死在开始。类似这样的机器人设计有很多,银行的大厅里、酒店的大厅里、火车站、飞机场都能看到这样的机器人。但这样的项目从一开始就注定要失败。因为它只能回答最简单、初级的问题,远远达不到像人一样思考和回答。我以法律机器人为例,法律问题何等复杂,它需要多层“复杂”逻辑的综合运算,然而,现在的人工智能还基本停留在“一维逻辑”层面。啥叫多层复杂逻辑?比如,我问机器人:我应该如何维权?事实上,要回答这个问题,需要多方位综合分析才能解决这一问题,要考虑到案件的具体情况,要找到其所适用的法律依据,还要考虑到当事人的实际情况(如支付能力等),通过多层复杂逻辑完成运算和博弈,最终才可能给当事人一个靠谱的法律建议。这种多层复杂逻辑甚至还需要律师在实践中不断学习才能最终完成。然而,当下的机器人在解析法律问题时,还只是“一维逻辑”,它只能从大数据中匹配出一个最靠谱的答案,却无法按照“多层复杂逻辑”帮助当事人解决实际问题。

有人会说,AlphaGo不是已经战胜李世石了吗?怎么能说,机器人的思维能力不如人呢?AlphaGo所做的事情是下围棋,这是“运算”,不是“思维逻辑”,在机器人的研究中,如果分不清这两个概念是很可怕的,当下机器学习的最大优势还是“运算”,所以,我在实验中让机器人学习很多国家的法律,它的确很牛,记忆力和回答的准确性,具有不可比拟的优势。然而,如果我让它帮我分析一个具体的案例,这时候需要“多层复杂逻辑”,它就显得“力不从心”了!所以,在有关机器人的项目中,一定要清楚机器学习的优势到底在哪里?搞不清楚这些基本问题,就只有白花钱。所以,那些摆设在大厅里试图回答你问题的机器人,注定从一开始就是摆设或玩具。不要说复杂问题它回答不了,即便是最简单的检索问题,碍于“语音识别”的误差以及内部数据的有限性,它所检索到的也更多是“不知道”。这种不能解决任何实际问题的摆设,对于投资人而言,显然无法达到投资的预期和目的。

很赞哦! ()